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Introduction

Accurate values for daily inhalation rates in humans are 
required for health risk assessment and management 
of air pollutants (Health Canada 1996; van Engelen and 
Prud’homme de Lodder 2007) especially for the young 
and aged, who are thought to be more susceptible than 
adults to the adverse health effects of airborne chemicals 
(Braun-Fahrländer et al. 1997; Tolbert et al. 2000; Liu et al. 
2003; Yang et al. 2003).

Estimates of daily inhalation rates in humans have 
been greatly improved with the use of the energy expen-
diture approach of Layton (1993). This approach has been 
formulated in a basic equation comprising the following 

terms (Equation 1): E (mean energy expenditure required 
for a given activity level expressed as kcal/min), H (oxy-
gen uptake factor expressed as L of oxygen consumed/
kcal expended), and VQ (ventilatory equivalent ratio of 
the minute ventilation rate (VE) to the oxygen consump-
tion rate (VO

2
), unitless). Nevertheless, the procedures 

developed by Layton (1993) to estimate E values are not 
free from biases and were showed to generate errors of 
daily inhalation estimates ranging from−36% to +60% 
(Brochu et al. 2006c). The difficulty in achieving accurate 
estimations of E values has been addressed by Brochu 
et al. (2006a, b) with the use of total daily energy expendi-
tures (TDEE) that are measured from the doubly labeled 
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water (DLW) method (Bluck 2008). Values for TDEE sys-
tematically encompass voluntary and involuntary energy 
expended by humans during real-life situations in their 
normal surroundings each minute of the day, 24 h per 
day, on a daily basis for 7–21 days (IDECG 1990).

The precise values of the two other parameters in the 
equation of Layton (i.e. H and VQ) are still a matter for 
discussion. A postprandial H value of 0.21 L of O

2
/kcal has 

been first calculated for Americans by Layton (1993) and 
later confirmed for Canadians by Brochu et  al. (2006a). 
However, a critical analysis of possible fluctuations in 
the postprandial H value as a function of age, sex, and 
typical dietary intakes in various countries has not been 
performed. Moreover, the variation of H values during 
nighttime sleep in fasting subjects has never been taken 
into account in the calculation process of daily inhalation 
rates. Similarly, VQ values have been shown to vary from 
34.2 to 36.8 in pregnant and lactating women in Brochu 
et  al. (2006b) compared with the constant value of 27 
reported in Layton (1993). However, the accurate variation 
of VQ values in non-gestational and lactating individuals as 
a function of age has not yet been reliably characterized.

The present article is therefore intended to improve 
the methodology developed previously by Brochu et al. 
(2006a–c) for a scientifically sound determination of 
daily inhalation rates in free-living individuals based on 
DLW measurements. The overall approach involved the 
determination and integration of the means and standard 
deviations for E, H, and VQ for nighttime sleep (fasting 
phase) and daytime activities (postprandial phase) into 
the calculation process of physiological daily inhalation 
rates in normal-weight individuals.

Methodology

Study design
Means and standard deviations (SD) for H and VQ were 
determined initially and then used subsequently in the 
second part, with those of E and sleep durations (Sld), 
for the calculation of the physiological daily inhalation 
rates. Data for athletes and explorers were excluded from 
the calculation process of the latter values. Daily inhala-
tion values were expressed as absolute values (m3/day), 

as well as relative values to the body weight (m3/kg-day) 
and body surface area (BSA; m3/kg-m2). Normal-weight 
individuals were defined according to the following body 
mass index (BMI) cutoffs: from the 3rd to 97th percen-
tiles for children under 3 years old, the 85th percentile 
or below for children aged 3–19 years, and from 18.5 to 
24.5 kg/m2 for adults over 19 up to 96 years (IOM 2002). 
Infants, toddlers, children, and teenagers are hereafter 
collectively referred to children.

Values for E were determined by using individual DLW 
measurements taken from the database reported in IOM 
(2002) for healthy normal-weight males and females 
aged 2.6–96 years (n = 1235). These values, which are 
systematically measured with the DLW method, include 
subject-specific information on body weight, height, BMI 
value, basal energy expenditure (BEE), and TDEE values. 
Values for BEE were measured by indirect calorimetry 
(Ferrannini 1988; Bursztein et  al. 1989), whereas those 
for TDEE were obtained by mass spectrometric monitor-
ing of disappearance rates of oral doses of water isotopes 
usually monitored in the urine (IDECG 1990). Values for 
E during nighttime sleep were calculated by using BEE 
values. Those during the aggregate daytime activities are 
the result of subtracting BEE from TDEE values.

An exhaustive compilation and a critical analysis of 
published data in healthy subjects were performed in 
order to select appropriate parameters for the determina-
tion of H values during postprandial and fasting phases 
(i.e. typical diets found in various countries, respiratory 
gas-exchange measurements of oxygen and carbon diox-
ide) and VQ values under resting conditions and for the 
aggregate daytime activities (i.e. simultaneous measure-
ments of minute ventilation and VO

2
) (appendix).

Food recall surveys (i.e. retrospective method) or 
weighed dietary records (i.e. prospective method using 
household measures or collection of duplicate diets) are 
used to describe dietary intakes in subjects (Torun et al. 
1996). Experimental procedures used for measurements of 
VO

2
, carbon dioxide production (VCO

2
), and VE are speci-

fied in each publication. However, VO
2
 and VCO

2
 values 

are often measured using paramagnetic O
2
 and infrared 

CO
2
 analyzers, respectively (Skoog et al. 2006). Values for 

VE are generally measured by spirometry and sometime by 

Abbreviations
α	 data for the aggregate daytime activities of subjects
β	 data for subjects under resting conditions  
BEE	 basal energy expenditure (BMR expressed on a 

24-h basis)  BMI	body mass index
BMR	 basal metabolic rate (punctual measurement)  
BSA	 body surface area  
BTPS	 body temperature pressure saturation
DLW	 doubly labeled water
E	 minute energy expenditure rate
ECG	 stored daily energy cost for growth
H	 oxygen uptake factor, volume of oxygen (at STPD) 

consumed to produce 1 kcal of energy expended

RER	 VCO
2
/VO

2
 ratio, more properly known as the 

respiratory exchange ratio
Sld	 sleep duration
SMR	 sleeping metabolic rate
STPD	 standard temperature and pressure, dry air
TDEE	 total daily energy expenditure
VCO

2
	 carbon dioxide production rate

VE	 minute ventilation rate
VO

2
	 oxygen consumption rate (also known as the 

oxygen uptake)
VQ	 ventilatory equivalent for VO

2
 (VE at BTPS/VO

2
 at 

STPD) 
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pneumotacography (Mason et al. 2005). Sld are recorded 
day-by-day on questionnaires by survey respondents 
for extensive periods of time (usually longer than a year) 
including complementary data, as those regarding work 
conditions, physical activities, diets, as well as health and 
socioeconomic variables (e.g. Bjorvatn et al. 2007).

VO
2
β and VO

2
α: criteria for data selection for H and VQ 

calculations
Published sets of measurements for VE, VO

2
, and VCO

2
, 

VO
2
 values measured in healthy subjects at rest or while 

performing various activities at about the sea level, when 
breathing an oxygen concentration of 21%, were ranked 
per age groups. Then, only those measured in subjects 
with experimental VO

2
 demands within the span of 

VO
2
 values for resting conditions (referred to as β) or 

the aggregate daytime activities (referred to as α) were 
included in the present study. Values for VO

2
β and VO

2
α 

were calculated by using BEE and TDEE values reported 
in the database of the IOM (2002) for healthy normal-
weight individuals (age = 2.6 months–96 years; n = 1235). 
According to Layton (1993), VE (L/min) is expressed as 
a function of H (L of O

2
/kcal), E (kcal/min), and VQ (i.e. 

VE/ VO
2
 ratio, unitless) values as follows:

VE VQ= × ×E H
	

(1)

 Hence,

VO2 = ×E H
	

(2)

 where H is the volume of oxygen consumed at standard 
temperature and pressure, dry air (STPD) to produce 1 
kcal of energy expended, and VQ is the ratio of the VE 
value at body temperature and saturated with water 
vapor (BTPS) to the VO

2
 value at STPD.

Therefore, values for minute energy expenditure rates 
(Eβ and Eα in kcal/min) as well as VO

2
β and VO

2
α (L/

min) were expressed in terms of BEE and TDEE values 
(kcal/day) as well as the daily energy costs for growth 
(ECG, in kcal/day) and Sld (in h/day) by using the follow-
ing equations:

E
BEE ECG

 =
+



1440

	

(3)

E
TDEE BEE

24 Sld 60

BEE ECG
 =

−
−( )×









 +

+



1440

	

(4)

VO
BEE ECG

14402 =
+





× H

	

(5)

VO
TDEE BEE

(24 Sld) 60

BEE ECG
2 =

−( )
− ×

+
+( )







 ×

1440
H

	

(6)

 where 1440 and 60 are the conversion factors from days 
to minutes and hours to minutes, respectively, and 24 is 
the number of hours in a day.

Values for ECG were added to BEE values in order to 
take into account the energy demands required during the 
growth process from birth up to 18 years of age for females 
and 24 years old for males (Brochu et al. 2006a). The BEE 
value corresponds to the basal metabolic rate (BMR) 
expressed during a 24-h period. The BMR value is defined 
as the sum of the total energy expenditure required to 
maintain the minimal tissue cellular activity in order to 
sustain vital functions, notably blood circulation, respira-
tion, gastrointestinal, and renal processes (Guyton 1991). 
BMR values are measured under standard conditions in 
a comfortably warm room, with subject lying at complete 
rest in thermoneutral conditions and having fasted for 
12–13 h. Respiratory gas-exchange rates are measured for 
subjects 40 min immediately after waking (e.g. Butte et al. 
2004). The postprandial H value of 0.21 L of O

2
/ kcal used 

by Layton (1993) and Brochu et al. (2006a–c) is in accor-
dance with that calculated in the present study (0.207 L of 
O

2
/kcal) by using VO

2
 and BMR values per unit of organ 

weight established by Malcom and Hollyday (1971). Values 
for VO

2
 per unit of tissue weight (3.7 to 123.8 L of O

2
/ kg-

day) for brain, liver, heart, kidneys, and muscles reported 
in Malcom and Hollyday (1971) for adults correspond to 
a mean H value of 0.207 L of O

2
/kcal for these five organs 

when divided by their respective BMR (17.6–606 kcal/kg 
of organ per day). Consequently, a H value of 0.21 L of O

2
/

kcal was used for the calculation of the lower and upper 
limits of VO

2
β and VO

2
α for the different age groups in this 

study (Tables 1 and 2).

H values
Variations of the postprandial H value (referred to as 
H

P
 value) as a function of age, sex, and country were 

calculated based on typical dietary intake contributions 
found in 17 countries. This is done by taking into account 
absorption rates of ingested protein, fat, and carbohy-
drates (92%, 95%, and 98%, respectively) through the 
gastrointestinal tract (Guyton 1991) and considering that 
the oxidation of 1 g each of these nutrients consumes 
0.97, 0.83, and 2.0 L of O

2
 and yields 4.5, 9.5, and 4.2 kcal 

of energy, respectively (McLean and Tobin 1987; Layton 
1993; Brochu et al. 2006a). Values for H

P
 and H for fasting 

subjects (referred to as H
F
 value) were also calculated by 

using values for VO
2
 and VCO

2
, or alternatively using VO

2
 

and respiratory exchange ratios (i.e. VCO
2
/VO

2
, known 

as the RER value) simultaneously measured by indirect 
calorimetry at STPD in the same subjects. Then, values 
for VO

2
 and VCO

2
 (L/min) were converted into minute 

energy expenditure rate (E, kcal/min) and H (L/kcal) by 
using the following equations (Weir 1949):

E = × + ×3 941 1 106 2. .VO VCO2	
(7)

H = × × + × −VO VO VCO2 2 2( . . )3 941 1 106 1

	
(8)

 The combustion of carbohydrates, protein, and fat from 
ingested food requires 0.199, 0.212, and 0.221 L of O

2
 

per kcal of energy expended, respectively (McLean and 
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Tobin 1987). During the fasting phase, 0.198, 0.200, 0.210, 
0.211, and 0.214 L of O

2
/kcal are required for the combus-

tion of glycogen, glucose, 3-hydroxybutyric acid, acetoa-
cetic acid, and triacylglycerol, respectively (Elia 1997). 
Consequently, a minimum of 0.199 L of O

2
/kcal and max-

imum of 0.221 L of O
2
/kcal for H

P
 values (McLean and 

Tobin 1987), as well as minimal and maximal H
F
 values 

of 0.198 and 0.214 L of O
2
/ kcal, respectively (Elia 1997), 

were used into the calculation process of physiological 
daily inhalation rates.

VQ values
Values for VQ were calculated by dividing VE by VO

2
 val-

ues simultaneously measured for the same subjects at 
BTPS and STPD, respectively. Voluntary and involuntary 
activities during daytime are performed by individuals 
in the sitting or standing position. Therefore, VQα val-
ues were calculated exclusively by using published VEα 
and VO

2
α measured while subjects were in the upright 

position. The data for subjects in the supine position 
were insufficient to calculated VQβ values. However, 
only slightly higher energy expenditure is required when 
subjects, during resting conditions, change from a supine 
to an upright position, which consequently increase VO

2
, 

VCO
2
, VE values by about the same extent (e.g. Donevan 

et al. 1962; Damato et al. 1966). Conversely, lower BMR 
values observed in normal-weight subjects during 
profound sleep (e.g. Ravussin et  al. 1985; Garby et  al. 

1987) slightly reduce VE and VO
2
 demands as well (e.g. 

Colrain et al. 1987). These fluctuations of VO
2
 demands 

combined with the change of VE and VO
2
 values always 

remain within the span of VO
2
β. Therefore, VQβ values 

were calculated by using sets of VEβ and VO
2
β values 

measured in subjects in the upright position. Such VQβ 
values can be used to characterize VQ values for subjects 
during resting conditions in the upright or supine posi-
tion as well as during nighttime sleep.

Published sets of VE and VO
2
 values were found for 

individuals aged <1 year and for those from 4 to 91 years 
in the supine and upright positions, respectively. No 
data were available for children from 1 to <4 years of age. 
Thus, VQ values for the latter aged group were assumed 
to be the same as those for children aged 1 to <10 years. 
Mean VQβ values of 30.2 ± 7.6 and 30.8 ± 0.9 calculated 
for nonsedated children aged 2 h to 1.4 months (Cook 
et al. 1955; Stahlman and Meece 1957; Nelson et al. 1962; 
n = 131) and 4 to <10 years, respectively (Robinson 1938; 
Inbar et  al. 1981; n = 35), are within the same order of 
magnitude, and both appear to be slightly higher than 
the value of 27.0 ± 4.3 based on data reported in Lees 
et  al. (1967) for sedated children aged 0.5–8.5 months 
(n = 26). Therefore, the former value (i.e. 30.2 ± 7.6) was 
used to characterize VQβ in children aged 2.6 months 
to <1 year rather than the latter (i.e. 27.0 ± 4.3). The VQα 
value for children aged <1 year old was assumed to be the 
same as the VQβ value since such children have limited 

Table 1. � Anthropometric, energetic measurements, and oxygen consumption rates in healthy normal-weight males and females aged  
2.6 months to <10 years.

Gender and age 
group (years) n

Body  
weight (kg)a

Body surface 
area (m2) Energetic measurement (kcal/day)

Oxygen consumption 
rate (L/min)

Mean ± SD D Mean ± SD D

BEEb ECGc TDEEd VO
2
βe VO

2
αe

Mean ± SD D Mean ± SD D Mean ± SD D Min Max Min Max

Males
0.22 to <0.5 28 6.6 ± 1.0 L 0.34 ± 0.03 L 387 ± 64 L 121 ± 42 L 492 ± 125 L 0.06 0.09 0.06 0.19
0.5 to <1 37 8.8 ± 1.1 L 0.42 ± 0.03 L 532 ± 63 N 40 ± 9 L 722 ± 123 L 0.07 0.10 0.08 0.24
1 to <2 34 10.7 ± 1.1 N 0.49 ± 0.04 N 668 ± 71 N 22 ± 4 L 890 ± 145 L 0.07 0.12 0.11 0.28
2 to <5 25 15.3 ± 3.4 N 0.64 ± 0.10 N 846 ± 153 N 17 ± 4 L 1176 ± 274 L 0.09 0.16 0.13 0.35
5 to <7 96 19.8 ± 2.1 L 0.79 ± 0.06 L 1012 ± 91 N 41 ± 6 L 1398 ± 192 L 0.12 0.20 0.18 0.45
7 to <10 28 26.8 ± 4.2 L 0.98 ± 0.10 L 1129 ± 116 N 51 ± 10 L 1722 ± 322 L 0.13 0.21 0.18 0.55
Females
0.22 to <0.5 49 6.6 ± 0.9 L 0.34 ± 0.03 L 374 ± 53 L 117 ± 42 L 471 ± 102 L 0.06 0.09 0.07 0.20
0.5 to <1 63 8.5 ± 1.0 L 0.41 ± 0.03 L 506 ± 67 L 38 ± 7 L 661 ± 121 N 0.06 0.10 0.07 0.24
1 to <2 61 10.6 ± 1.4 L 0.49 ± 0.04 L 630 ± 85 L 18 ± 3 L 844 ± 160 N 0.07 0.13 0.09 0.28
2 to <5 36 14.4 ± 3.0 L 0.62 ± 0.09 L 776 ± 132 N 19 ± 4 L 1083 ± 219 L 0.08 0.16 0.11 0.34
5 to <7 102 19.7 ± 2.3 L 0.79 ± 0.06 L 943 ± 75 N 34 ± 5 L 1332 ± 184 L 0.12 0.17 0.16 0.39
7 to <10 140 27.3 ± 3.6 L 0.99 ± 0.08 L 1079 ± 86 N 42 ± 7 L 1660 ± 265 L 0.13 0.20 0.19 0.51
N = normal; L = lognormal. n = number of individuals; SD = standard deviation.
aNormal-weight for children aged 2.6 months to <3 years with body mass index (BMIs) between the 3rd and the 97th percentiles and 
those aged 4 to <10 years with BMIs corresponding to the 85th percentile or below (IOM 2002).
bBEE = basal energy expenditure (i.e. basal metabolic rate expressed on a 24-h basis) measured by indirect calorimetry (IOM 2002).
cECG = stored daily energy cost for growth (Brochu et al. 2006a).
dTDEE = total daily energy expenditure. TDEEs were based on 2H

2
O and H

2
18O disappearance rates from urine monitored by gas–isotope 

ratio mass spectrometry during 7- to 21-day periods for free-living individuals (IOM 2002).
eVO

2
β and VO

2
α = oxygen consumption rates for individuals at rest and during aggregate daytime activities, respectively, used for the 

selection of data for the calculation of H and VQ values. D = best fit distribution (i.e. lognormal or normal) according to the Anderson–
Darling goodness-of-fit test performed on individual data for each age group.

In
ha

la
tio

n 
T

ox
ic

ol
og

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
U

S 
E

PA
 E

nv
ir

on
m

en
ta

l P
ro

te
ct

io
n 

A
ge

nc
y 

on
 0

7/
15

/1
5

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



78  P. Brochu et al.

� Inhalation Toxicology

physical capacity and opportunities for doing a great deal 
of demanding exercises (Polgar and Weng 1979; Guyton 
1991). No published VE and VO

2
 were found for children 

from 1 to <10 years of age for VO
2
 demands within the 

span of VO
2
α. Values for VQβ and VQα for the latter 

age group were assumed to be the same (i.e. 30.8 ± 0.9), 
considering the small difference found between VQβ 
(27.7 ± 3.4, n = 145) and VQα (29.9 ± 4.2, n = 166) values in 
older children aged 10 to <16.5 years (Table 3).

Accuracy of energetic measurements
The accuracy of E, as well as the BEE values based on the 
gas exchange of VO

2
 and VCO

2
 monitored by indirect calo-

rimetry and calculated with the use of the Weir equation 
(Equation 7), has been shown to vary from +1% to +2% 
compared with values measured by steady-state direct 
calorimetry in a sealed chamber (Turel and Alexander 
1964). Consequently, H

P
 and H

F
 values calculated based 

on the Equation 8 are affected by an error ranging from−2% 
to−1%. During DLW measurements, subjects are advised 
not to change their usual sources of ingested water for the 
entire duration of the study. Changing water sources dur-
ing the isotope elimination period has been found to lead 
to an increase in the mean error of TDEE values by−8.7% 
in infants and +5.3% in soldiers (Delany et al. 1988; Jones 
et al. 1988). However, the mean accuracy of TDEE values 
from DLW method has been validated against other meth-
ods, including metabolic chambers as varying from −1.0% 

to +3.3% when the sources of tap water were not modi-
fied during the entire period (IDECG 1990). This range 
of errors also affects the accuracy of ECG values (Brochu 
et al. 2006a). Therefore, the combined effects of simulta-
neous minimal and maximal mean errors associated with 
H

P
, H

F
 (i.e.−2% to−1%), BEE (i.e. +1% to +2%), TDEE, and 

ECG values (i.e.−1.0% to +3.3%) on the order of magnitude 
of physiological daily inhalation rates were determined in 
the present study.

Physiological daily inhalation rates
Tidal volumes, breathing frequency rates, VE and VO

2
 

values (e.g. Tabachnik et  al. 1981; Colrain et  al. 1987; 
Hudgel et  al. 1993; Morrell et  al. 1995), systolic and 
diastolic blood pressures, and heart rates have all been 
shown to be lower in sleeping subjects compared with 
their awaken counterparts (e.g. Carrington et  al. 2005; 
Zaregarizi et al. 2007). These findings are in accordance 
with the reduction of BMR values during sleep. Based on 
heat production measured in sleeping subjects by direct 
calorimetry, the sleeping metabolic rates (SMR) were cal-
culated to be 0.960 ± 0.023 times the BMR values in nor-
mal-weight (n = 86) individuals (Benedict and Carpenter 
1910; Buskirk et al. 1960; Bessard et al. 1983; Schutz et al. 
1984; Shapiro et al. 1984; Ravussin et al. 1985; Garby et al. 
1987). This correcting factor (referred to as F

sleep
) affecting 

BEE values as well as the minimal and maximal F
sleep

 val-
ues of 0.870 and 1.039 were integrated into the following 

Table 2.  Anthropometric, energetic measurements, and oxygen consumption rates in healthy normal-weight males and females aged 
10–96 years.

Gender and age  
group (years) n

Body weight  
(kg)a

Body surface  
area (m2) Energetic measurement (kcal/day)

Oxygen consumption rate 
(L/min)

Mean ± SD D Mean ± SD D

BEEb ECGc TDEEd VO
2
βe VO

2
αe

Mean ± SD D Mean ± SD D Mean ± SD D Min Max Min Max

Males
10 to <16.5 26 43.5 ± 11.6 L 1.36 ± 0.24 L 1474 ± 287 L 89 ± 36 L 2488 ± 635 L 0.15 0.32 0.28 0.81
16.5 to <25 25 70.5 ± 6.1 N 1.87 ± 0.10 L 1737 ± 156 N 78 ± 41 N 3132 ± 527 N 0.22 0.31 0.35 0.72
25 to <35 46 71.3 ± 6.8 N 1.88 ± 0.12 N 1740 ± 168 L 0 ± 0  3012 ± 467 L 0.21 0.30 0.36 0.79
35 to <45 34 70.3 ± 6.5 N 1.86 ± 0.11 N 1625 ± 148 L 0 ± 0  3008 ± 386 L 0.19 0.30 0.40 0.66
45 to <65 17 72.3 ± 7.9 N 1.88 ± 0.14 N 1681 ± 309 L 0 ± 0  2697 ± 492 L 0.20 0.36 0.34 0.66
65 to ≤96 50 68.9 ± 6.7 L 1.82 ± 0.11 L 1480 ± 187 L 0 ± 0  2286 ± 437 L 0.17 0.30 0.22 0.60
Females
10 to <16.5 95 45.2 ± 9.1 L 1.39 ± 0.18 N 1278 ± 150 L 82 ± 25 L 2143 ± 457 L 0.15 0.27 0.20 0.73
16.5 to <25 30 60.6 ± 5.6 L 1.68 ± 0.10 N 1385 ± 141 N 17 ± 39 N 2523 ± 294 N 0.15 0.24 0.30 0.61
25 to <35 88 58.7 ± 6.7 L 1.64 ± 0.12 L 1346 ± 154 N 0 ± 0  2387 ± 373 L 0.15 0.26 0.24 0.68
35 to <45 29 58.9 ± 4.8 N 1.64 ± 0.08 N 1320 ± 114 N 0 ± 0  2441 ± 334 L 0.15 0.22 0.31 0.57
45 to <65 51 58.7 ± 4.9 N 1.63 ± 0.09 N 1211 ± 139 L 0 ± 0  2128 ± 338 N 0.14 0.24 0.23 0.57
65 to ≤96 45 57.2 ± 7.3 L 1.60 ± 0.13 L 1217 ± 152 L 0 ± 0  1729 ± 383 L 0.15 0.25 0.16 0.52
N = normal; L = lognormal. n = number of individuals; SD = standard deviation.
aNormal-weight for children aged 10–19 years with body mass index (BMI) corresponding to 85th percentile or below and adults aged 
20–96 years with BMIs between 18.5 and 25 kg/m2 (IOM 2002).
bBEE = basal energy expenditure (i.e. basal metabolic rate expressed on a 24-h basis) measured by indirect calorimetry (IOM 2002).
cECG = stored daily energy cost for growth (Brochu et al. 2006a).
dTDEE = total daily energy expenditure. TDEEs were based on 2H

2
O and H

2
18O disappearance rates from urine monitored by gas–isotope 

ratio mass spectrometry during 7- to 21-day periods for free-living individuals (IOM 2002).
eVO

2
β and VO

2
α = oxygen consumption rates for individuals at rest and during aggregate daytime activities, respectively, used for the 

selection of data for the calculation of H and VQ values. D = best fit distribution (i.e. lognormal or normal) according to the Anderson–
Darling goodness-of-fit test performed on individual data for each age group.
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equation in order to determine the SMR values (in kcal/
min) for subjects during sleep in the supine position:

SMR
BEE ECGsleep=

×( )+











F

1440
	

(9)

 Values for physiological daily inhalation rates (m3/day) 
were then calculated by using the following expression:

PDIR
(SMR VQ Sld

E VQ Sld
F

P

=
× × × +

× × × −








×

H

H



 

)

( ) ( )
.

24
0 06

	

(10)

 where 0.060 is the combined conversion factor from 
hours to minutes and liters (L) to cubic meters (m3).

Values for physiological daily inhalation rates 
expressed per unit of BSA were determined by using the 
BSA values calculated on the basis of height (cm) and 
weight (kg) values as follows (Mosteller 1987):

BSA
height weight

3600
=

×





0 5.

	

(11)

Sleep durations
Sld from the literature were used in this study regardless 
of the under-, normal-, overweight, and obese propor-
tions of individuals in the different cohorts. However, 
several publications suggest that overweight and obese 
children and adults have shorter night sleep compared 
with their normal-weight counterparts (Taheri et  al. 
2004; Cizza et  al. 2005; Gangwisch et  al. 2005; Vorona 
et al. 2005; Beebe et al. 2006; Kohatsu et al. 2006; Patel 
et al. 2006; Taheri 2006; Bjorvatn et al. 2007; Seicean et al. 
2007). On the contrary, some publications challenge 
this view (Koçoglu et al. 2003; Gibson et al. 2004; Hasler 
et al. 2004; Eisenmann et al. 2006). To dispel the influ-
ence of this ambiguity on inhalation values, two sets of 
daily inhalation rates were calculated and compared.

A first set of physiological daily inhalation rates was 
calculated by using the Sld reported in Bernstein et  al. 
(2001) and Eisenmann et al. (2006) for small cohorts of 
subjects composed of known proportions of normal-
weight, overweight, and obese individuals (i.e. 10.9% 
of boys and 13.6% of girls aged 7.5 to 10.9 years, 10.7% 
of males and 11.9% of females aged 11–16.5 years were 
overweight or obese; in adults aged 35–74 years, 45% of 
males and 24% of females were overweight, 9% of males 
and 13% of females were obese). This set of values was 
compared with a second set of inhalation rates that was 
calculated when Sld for percentages of overweight/
obese individuals in both cohorts were decreased by 
25%. This process of calculation corresponds to the 
worst case scenario based on data reported in the lit-
erature. Sld for 60% of overweight/obese children were 
decreased by 25% based on published values that indi-
cate that 13.5–57.6% of overweight/obese children aged 
7.5–16.5 years (n = 6426) have sleep deprivation varying 
from 13.1% to 21.9% (Eisenmann et  al. 2006; Seicean 
et al. 2007). Sld for 35% of overweight adults and 55% of 
their obese counterparts were decreased by 25% consid-
ering the fact that 27.8–35.1% of overweight adults and 
29.3% to 53.1% of their obese counterparts (n = 96,570) 
aged 32–86 years (Gangwisch et al. 2005; Kohatsu et al. 
2006; Patel et  al. 2006; Bjorvatn et  al. 2007) have Sld 
14.3–25.4% and 16.4–26.2%, respectively, shorter than 
the healthy baseline of 7 h per night (Kripke et al. 2002; 
Patel et al. 2004; Cizza et al. 2005; Gangwisch et al. 2005; 
Seicean et al. 2007).

Statistical analysis
Means, SD values, and distribution percentiles were cal-
culated for all values, which were grouped by age with 
>30 subjects per group in order to optimize the probabil-
ity of achieving a normal distribution for each age group, 
as formally recommended according to the central limit 
theorem (Feller 1945; Trotter 1959; Rice 1995). Monte 

Table 3.  Ventilatory equivalents for healthy individuals aged 2 h to 96 years at rest and during aggregate daytime activities.

Age groups for 
both genders 
(years)

Ventilatory equivalents (L of air inhaled/L of O
2
 consumed)a

During resting conditionsb 
(VQβ)

During the aggregate daytime 
activitiesb (VQα)

Below the anaerobic 
threshold During anaerobiosis

n Mean ± SD

VO
2

c

n Mean ± SD

VO
2

c

n Mean ± SD Min Max n Mean ± SD Min Max Min Max Min Max

<1 131 30.2 ± 7.6 16.7 60.8  Same values as 
those for VQβ

   Not 
applicable

   Not 
applicable

  

1 to <10 35 30.8 ± 0.9 25.4 46.6  Same values as 
those for VQβ

  27 26.6 ± 0.9 0.54 0.70 88 36.9 ± 5.2 0.86 2.62

10 to <16.5 145 27.7 ± 3.4 17.1 39.4 166 29.9 ± 4.2 18.9 49.2 23 30.0 ± 0.4 0.76 0.92 1282 37.6 ± 2.1 1.50 4.47
16.5 to <25 114 27.4 ± 4.8 14.4 47.4 85 32.2 ± 6.1 21.0 100.5 459 26.9 ± 2.0 0.72 1.81 818 35.3 ± 2.3 3.00 5.63
25 to <35 133 32.2 ± 3.1 18.0 64.0 318 32.6 ± 4.7 15.7 84.6 390 29.8 ± 2.8 0.80 1.78 535 33.6 ± 1.5 3.01 5.18
35 to <45 60 30.6 ± 2.2 22.1 48.0 47 33.1 ± 8.6 15.3 91.5 205 26.1 ± 1.9 0.75 1.75 125 37.7 ± 1.5 3.14 4.23
45 to ≤96 38 30.6 ± 2.6 22.3 40.8 59 33.7 ± 7.2 16.0 76.5 89 28.7 ± 2.1 0.77 1.17 2736 35.7 ± 1.0 1.51 4.94
n = number of individuals; SD = standard deviation; Min = minimal value; Max = maximal value.
aVQ = ratio of the minute ventilation rate (VE in L/min at BTPS) to the oxygen uptake (VO

2
 in L/min at STPD). The simultaneous VE and 

VO
2
 measurements used for VQ calculations were taken from different studies, which are cited in the appendix.

bVO
2
 values for VQβ and VQα vary from 0.06 to 0.36 and 0.06 to 0.81 L/min, respectively (Tables 1 and 2).

cOxygen consumption rate (in L/min).
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Carlo simulations were used in order to take into account 
SD values into mean calculations and different physi-
ological equations. Each calculation process was based 
on random sampling involving 10,000 iterations. Log 
normal distributions of Sld were used into the calcula-
tion process of physiological daily inhalation rates based 
on data reported in Knutson and Lauderdale (2007) and 
Seicean et  al. (2007). Distributions of other parameters 
were defined to be either lognormal or normal according 
the Anderson–Darling goodness-of-fit tests performed 
on individual data (Tables 1–4). The same statistical 
test was used to define the best fit distributions of the 
resulting physiological daily inhalation rates per age 
group. The number of individual observations in fasting 
subjects reported in Gibney et  al. (2003) and Shepherd 
et  al. (2007) was insufficient (n = 8) for the use of the 
Anderson–Darling test. Therefore, individual H

P
 (n = 102) 

values for subjects in the supine position were statically 
tested in order to characterize the distribution type for 
the H

F
 value during nighttime sleep.

Results

Mean and SD values for body weights, BSA, BEE, ECG, 
and TDEE as well as lower and upper limits of VO

2
β and 

VO
2
α are presented in Tables 1 and 2, while those for 

Sld are reported in Table 5. Mean H
P
 values resulting 

from nutrient intakes in different countries are given in 
Tables 6–8. Those for mean and SD values and distribu-
tion percentiles of VQβ and VQα values as well as mean 
and SD values for VQ ratios below the anaerobic thresh-
old and during anaerobiosis are presented in Table 3. 
Means and distribution percentiles of physiological daily 
inhalation rates in normal-weight males and females 
aged 2.6 months to 96 years are given in Tables 9 and 10 
respectively. Mean values for daily inhalation rates as a 
function of age are presented in Figures 1–3.

Results of Anderson–Darling goodness-of-fit tests on 
anthropometric and energetic values are reported in 
Tables 1 and 2, while those on respiratory parameters are 
given in Table 4. Finally, physiological daily inhalation 
rates for all age groups in m3/day, m3/kg-day, as well as 
m3/m2-day better fit with lognormal distributions except 
for those in m3/ day for girls aged 1 to <2 years, which 
better fit with a normal distribution (data not shown in 
tables).

Values for H
P
 based on dietary intakes were found to 

vary between 0.203 and 0.208 L of O
2
/kcal in 17 coun-

tries (Table 6), albeit North-American values range from 
0.206 to 0.208 L of O

2
/kcal. H

P
 values for the Canadian 

population range from 0.205 to 0.207 L of O
2
/kcal for in 

term infants after birth and remain relatively constant 

Table 4. � Distribution type of parameters used in the calculation process of ventilatory equivalents, oxygen uptake factors, and 
physiological daily inhalation rates.

Parameter Acronyma n Age (years) Distribution
 VO

2
β 337b 0.22 to 96 Normal

Oxygen consumption rate (L/min) VO
2
α 307b 1 to 96 Lognormal

 VO
2Sub-anaerobiosis

682b 1 to 96 Lognormal

 VO
2Anaerobiosis

296b 1 to 96 Lognormal

Carbon dioxide production (L/min) VCO
2
β 162b 0.22 to 96 Normal

 VCO
2
α 117b 1 to 96 Lognormal

 VEβ 131b 0.22 to <1 Normal

Minute ventilation rate (L/min) VEβ 49b 1 to 96 Lognormal

 VEα 141b 1 to 96 Lognormal

 VE
Sub-anaerobiosis

682b 1 to 96 Lognormal

 VE
Anaerobiosis

296b 1 to 96 Lognormal

Respiratory exchange ratio (unitless) RERβc 162b 1 to 96 Lognormal

 RERαc 117b 1 to 96 Lognormal

Ventilatory equivalent ratio (unitless) VQβd 280b 0.22 to 96 Lognormal

 VQαd 141b 1 to 96 Lognormal

Oxygen uptake factor (L of O
2
/kcal) H

F
e 102b 0.22 to 96 Normal

 H
P

f 229b 0.22 to 96 Lognormal

Sleep duration (h/day) Sld 2055g 0.22 to 96 Lognormal
n = number of individual data on which the best fit distribution (i.e. lognormal or normal) has been defined.
aβ = for subjects at rest. α = during the aggregate daytime activities of subjects.
bBest fit distribution (i.e. lognormal or normal) according to the Anderson–Darling goodness-of-fit test performed on individual data 
taken from studies cited in the appendix and Johnson et al. (1960), Reeves et al. (1961), Åstrand et al. (1964), Frick and Somer (1964), 
Emirgil et al. (1967), Hermansen et al. (1970), Jones et al. (1970), Pernow and Saltin (1971), and Capderou et al. (1997).
cRER = VCO

2
/VO

2
 ratio.

dVQ = VE/VO
2
 ratio.

eDuring fasting phase.
fDuring postprandial phase.
gLognormal distribution based on data reported in Knutson and Lauderdale (2007) and Seicean et al. (2007).
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(variation of values ≤0.5%) into advanced age (Table 7). 
Values for H

P
 were confirmed to almost always be identi-

cal between males and females of the same age living in 
the same country. Variations observed were consistently 
<0.4% (Table 8). Values of 0.206, 0.207 and 0.209 L of O

2
/

kcal were calculated for the 10th, 50th, and 90th percen-
tiles based on Canadian nutrient intake contributions 
observed and compiled by Brault-Dubuc and Mongeau 
(1989) over a 10-year span (n = 747). H

P
 values were cal-

culated to be 0.206, 0.207, 0.207 L of O
2
/kcal for under-

weight (n = 14), normal-weight (n = 25), and obese adults 
(n = 18), respectively, based on typical German diet 
(Bosy-Westphal et al. 2004). H

P
 values for black (n = 246) 

and white Americans (n = 703), calculated in this study, 
based on their nutrient intakes (Morisson et  al. 1980) 
vary by <0.5%.

Results of H
P
 and H

F
 values calculated based on simul-

taneous VO
2
 and VCO

2
 measurements are not shown 

in tables. Values for an H
F
 of 0.205 ± 0.003, 0.206 ± 0.003, 

and 0.207 ± 0.003 L of O
2
/kcal for subjects at rest in a 

semi-recumbent (Müeller et  al. 1989; n = 5), almost 
supine (Saltzman and Salzano 1971; n = 20) and supine 
position (Gibney et  al. 2003; n = 6) were calculated with 
VO

2
, E, and RER values varying from 0.225 ± 0.035 to 

0.307 ± 0.044 L/min, 1.09 ± 0.05 to 1.47 ± 0.07 kcal/min, 
and 0.802 ± 0.057 to 0.858 ± 0.072, respectively. A mean H

F
 

value of 0.205 ± 0.001 L of O
2
/kcal was also calculated for 

adults aged 23–30 years (n = 27) performing exercise in the 

upright position below the anaerobic threshold (De Bock 
et al. 2005; VO

2
 of 2.83 ± 0.05 L/min, VCO

2
 of 2.37 ± 0.05 L/

min, E of 13.41 ± 0.21 kcal/min, RER of 0.838 ± 0.023 with 
minimal and maximal values of 0.759 and 0.928, respec-
tively). These results show that the level of exertions in 
fasting subjects (thus VO

2
 demands at rest or during 

exercise below the anaerobic threshold), and their posi-
tions (i.e. upright or supine position) during measure-
ments had a negligible effect on their H

F
 values (by <1%). 

Consequently, H
F
 and H

P
 values for nighttime sleep and 

the aggregate daytime activities, respectively, were calcu-
lated by using VO

2
 and VCO

2
 values measured in healthy 

subjects while performing activities with VO
2
 demands 

that were within the entire span of VO
2
β and VO

2
α values 

varying from 0.06 to 0.79 L/min (Tables 1 and 2) regard-
less of their positions during the experimental protocols. 
Values for H

F
 of 0.2057 ± 0.0018 L of O

2
/kcal (n = 31) and H

P
 

of 0.2059 ± 0.0019 L of O
2
/kcal (n = 1245) were then calcu-

lated. The H
P
 value was calculated by using published data 

for individuals aged 2 h to 73 years (n = 327) in the supine 
position and 8.8–81 years (n = 918) in the upright position 
(Tenney and Miller 1956; Baker et al. 1957; Spurr et al. 1957; 
Emirgil et  al. 1967; Pernow and Saltin 1971; Oren et  al. 
1981; Allen et al. 1984; Capderou et al. 1997; Treuth et al. 
1998; Gisolf et al. 2003; Cade et al. 2004; Shiou-Liang et al. 
2005; other references are underlined in the appendix). 
During the postprandial phase, VO

2
, E, and RER values of 

0.184 ± 0.011 L/min, 0.90 ± 0.04 kcal/ min, and 0.866 ± 0.074, 
respectively, were calculated for individuals in the supine 
position, compared with a VO

2
 of 0.291 ± 0.013 L/ min, an E 

of 1.41 ± 0.05 kcal/min, and a RER of 0.817 ± 0.050 for sub-
jects in the upright position.

The worst case scenario of decreased Sld in over-
weight/obese subjects has reduced the global physio-
logical daily inhalation rates of entire cohorts of subjects 
by only 0.03% to 0.17% (data not shown in tables). Initial 
Sld of 9.9 ± 1.2 (n = 919), 9.2 ± 0.8 (n = 2284), 7.8 ± 0.3 h/
day (n = 1707) in males and 10.2 ± 1.0 (n = 953), 9.3 ± 0.8 
(n = 2168), 8.2 ± 0.4 h/day (n = 1703) in females have been 
published for subjects aged 7.5–10.9, 11–16.5, and 35–74 
years, respectively (Bernstein et  al. 2001; Eisenmann 
et al. 2006). Classified in the same order, initial Sld values 
of entire cohorts of subjects were decreased to 9.7 ± 1.1, 
9.0 ± 0.8, 7.3 ± 0.3 h/day for males and 10.0 ± 0.9, 9.1 ± 0.8, 
7.9 ± 0.3 h/day for females as a result of a 25% reduction 
in Sld for 60% of overweight/obese children and 35% of 
overweight as well as 55% of obese adults. Sld specifically 
for overweight/obese subjects aged 7.5–10.9, 11–16.5, 
and 35–74 years were decreased to 7.4 ± 0.8, 6.9 ± 0.6, 
5.8 ± 0.3 h/day in males and 7.6 ± 0.7, 7.0 ± 0.6, 6.1 ± 0.3 h/
day in females, respectively.

Lower and upper mean errors associated with H
P
, H

F
 

(i.e.−2% to−1%), BEE (i.e. +1% to +2%), TDEE, and ECG 
values (i.e.−1.0% to +3.3%) affect physiological daily 
inhalation rates by −2.0 to −1.0, −0.08 to −0.01, −1.0 to 
+3.4, and −0.2 to +0.7%, respectively. Simultaneous maxi-
mal mean errors associated with H

P
, H

F
 values (–1%), 

BEE (+2%), ECG, and TDEE values (+3.3%) increase 

Table 5.  Sleep duration in healthy individuals aged 2.6 months 
to 96 years.

Gender and age group (years)
Sleep duration (h/day)
n Mean ± SD

For both genders
0.22 to <0.5 456a 14.2 ± 1.9
0.5 to <1 916a 13.9 ± 1.0
1 to <2 912a 13.4 ± 0.8
2 to <5 1361a 11.9 ± 0.6
5 to <7 900a 10.8 ± 0.5
Males
7 to <10 919b 9.9 ± 1.2
10 to <16.5 2284b 9.2 ± 0.8
16.5 to <25 552c 8.0 ± 1.2
25 to <35 127c 8.0 ± 2.0
35 to <45 670d 7.2 ± 0.7
45 to <65 1192d 8.0 ± 0.5
65 to ≤96 366d 8.8 ± 0.7
Females
7 to <10 953b 10.2 ± 1.0
10 to <16.5 2168b 9.3 ± 0.8
16.5 to <25 712c 8.5 ± 1.1
25 to <35 172c 8.4 ± 1.6
35 to <45 784d 8.1 ± 0.7
45 to <65 1196d 8.2 ± 0.5
65 to ≤96 376d 9.1 ± 0.7
aIglowstein et al. (2003).
bEisenmann et al. (2006).
cAdams (2006).
dAdams (2006) and Bernstein et al. (2001).
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daily inhalation values by +2.3%. The inverse scenario 
is observed with simultaneous minimal mean errors for 
H

P
, H

F
 (–2%), BEE (+1%), ECG, and TDEE (–1.0%) values 

affecting physiological daily inhalation rates by−3.0%. 
The use of SMR instead of BEE values (in Equation 10) 
has reduced daily inhalation values by only 0.6% to 1.8%. 
The use of the lowest H value of 0.203 L of O

2
/kcal for 

Vietnamese (n = 17,763) and the highest value of 0.208 L 
of O

2
/kcal for American (n = 74,275) during the postpran-

dial phase (Table 6) could have affected the physiological 
daily inhalation rates by only −1.2% to −0.7% and +0.5% 
to +0.9%, respectively, compared with the inhalation val-
ues calculated in this study based on H

P
 value of 0.2059 L 

of O
2
/kcal.

Discussion

All mean and almost all (98%) percentile values of phys-
iological daily inhalation rates calculated in the pres-
ent article (in m3/day, m3/kg-day, and m3/m2-day) are 

higher in males than in females, and are in accordance 
with Brochu et al. (2006a–c). As found in our previous 
studies, mean daily inhalation values expressed in m3/
kg-day follow a logarithmic pattern (Figure 2). Values 
drop rapidly with increasing age, from 16.5 to <25 
years in females (R2 = 0.94) and males (R2 = 0.96). Then 
mean physiological daily inhalation rates continue to 
decrease slowly as age increases up to 65 to 96 years. 
Mean daily inhalation values in males (0.225 ± 0.059 m3/
kg-day) and females (0.202 ± 0.059 m3/kg-day) aged 
65–96 years are found to be 61% and 64% lower, respec-
tively, than those for boys (0.572 ± 0.191 m3/kg-day) and 
girls (0.563 ± 0.180 m3/kg-day) 2.6 to <6 months old. 
When females and males age from 2.6 months to <16.5 
years, body weights increase proportionally more (by 
9.2- and 10.6-folds, respectively) than height does (by 
2.7- and 2.8-folds, respectively). This results in a moder-
ate increase of BSA values by 5.0- and 5.5-folds, respec-
tively. Beyond these ages, very few changes appear for 
weight, height, and BSA values. This explains why the 

Table 6.  Postprandial oxygen uptake factor resulting from daily nutrient intakes for all ages by country.

Age (years) n

Nutrient intake contributions (%) Oxygen uptake 
factorb  

(L of O
2
/kcal) CountryProtein Fat COHa

1 to 9 1442 17.4 20.6 62.0 0.206 Australiac

<1 month to 65+ 13,211 17.4 20.6 62.0 0.206 Canadad

24 to 74 1010 21.9 15.1 63.0 0.206 Chinae

1 to 24 3147 17.7 21.8 60.5 0.206 Finlandf,g

3 to 65+ 3003 16.7 38.1 45.3 0.208 Franceh

25 to 27 57 14.1 35.0 48.3 0.207 Germanyi

8.9 116 9.2 22.0 68.0 0.204 Ghanaf

2 to 8 101 18.5 23.2 58.2 0.206 Greecej

2 to 6 99 11.9 24.8 63.3 0.205 Indiak

9 and ≤ 60 1055 17.6 17.9 64.3 0.205 Italyf,l

40 to 50 351 19.4 15.1 65.5 0.205 Japanm

2 to 8; 50 to 69 1225 16.5 26.9 56.0 0.206 Swedenj,n

1.3 to 9 684 13.5 35.3 51.3 0.207 The Netherlandsf,o

8.8 114 11.7 16.0 72.0 0.204 The Philippinesf

0.5 to 1 2 2026 15.4 21.8 64.4 0.205 UKp

1 week to 75+ 74,275 17.4 34.6 47.6 0.208 USAl,q

All ages 17,763 9.8 11.4 78.9 0.203 Vietnamr

aCOH = Carbohydrate.
bH

P
 = postprandial oxygen uptake factor.

cHitchcock et al. (1984) and Jenner et al. (1988).
dNC (1977), Leung et al. (1984), and Brault-Dubuc and Mongeau (1989).
eWoo et al. (1998).
fKnuiman et al. (1983).
gRäsänen et al. (1985), Räsänen et al. (1991), and Räsänen and Ylönen (1992).
hRazanamahefa et al. (2005).
iBosy-Westphal et al. (2004).
jNeiderud et al. (1992).
kNarasinga et al. (1982).
lFreudenheim et al. (1993).
mTokudome et al. (1998).
nRiboli et al. 1997.
oHoffmans et al. (1986).
pBransby and Fothergill (1954), Margarey and Boulton (1984), Nelson et al. (1990), Payne and Belton (1992), and Ruxton et al. (1996).
qMorisson et al. (1980), Butte and Calloway (1981), Reichman et al. (1981), DHHS (1983), Gross (1983), Butte et al. (1984), USDA (1984), 
Pao et al. (1985), Oliveria et al. (1992), Simons-Morton et al. (1997), and Bollella et al. (1999).
rThang and Popkin (2004).
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mean physiological daily inhalation rates expressed 
in m3/m2-day begin to decrease linearly only as age 
increases from the age groups of 10 to <16.5 years for 
males (R2 = 0.92) and 16.5 to <25 years for females 
(R2 = 0.94) up to the age group of 65–96 years (Figure 3). 
Mean daily inhalation rates for boys 0.22 to <16.5 years 
old (10.99 ± 3.50 to 11.82 ± 3.50 m3/ m2-day) and girls 
0.22 to <10 years of age (10.81 ± 3.29 to 10.83 ± 1.84 
m3/m2-day) are higher than those for older males and 
females (8.42 ± 2.13 to 10.93 ± 2.80 and 7.20 ± 1.99 to 
9.90 ± 2.50 m3/m2 day, respectively). Furthermore, in 
agreement with our previous study, mean physiological 
daily inhalation rates in females as well as males aged 
25 to <65 years (14.46 ± 3.37 to 20.12 ± 5.03 m3/ day and 
0.247 ± 0.061 to 0.289 ± 0.077 m3/ kg-day) are lower than 
those for normal-weight pregnant and lactating females 

aged 23–55 years, whose values vary from 19.00 ± 9.98 
to 22.31 ± 2.50 m3/ day and 0.297 ± 0.056 to 0.330 ± 0.069 
m3/ kg-day (Brochu et al. 2006b). Moreover, mean daily 
inhalation rates in boys (0.428 ± 0.098 to 0.572 ± 0.191 m3/
kg-day) and girls (0.395 ± 0.076 to 0.563 ± 0.180 m3/kg-day) 
aged 0.22 to <10 years are higher than the highest means 
for under-, normal-, overweight, and obese gravid and 
breastfeeding females aged 11–55 years of 0.385 ± 0.110 
and 0.383 ± 0.064 m3/kg-day, respectively, as reported 
in Brochu et al. (2006b). This is the case in spite of (1) 
higher VQ means (34.2–36.8) used in the calculation of 
inhalation rates in pregnant and lactating females com-
pared with those (30.2 and 30.8) in non-gestational and 
non-lactating individuals and (2) similar mean H values 
(0.21 and 0.206 L/kcal, respectively).

Based on means and percentiles of physiological daily 
inhalation rates calculated in the present study, children 
are generally expected to inhale more air pollutants per 
unit of weight and BSA (i.e. in µg/kg-day and µg/m2 
day, respectively) than adults during identical exposure 
concentrations and conditions. The same applies when 
males are compared with females. The new methodology 
developed in this study therefore illustrates that some 
individuals inhale more air on a daily basis (thus more 
air pollutants) than estimated before. In males 16.5 to 
<25 years of age, 95th, 97.5th, and 99th percentile val-
ues of 28.05, 30.02, and 31.89 m3/day, respectively, were 
determined. In males 35 to <45 years old, correspond-
ing percentiles were 29.32, 31.84, and 35.40 m3/day, 
respectively. Values from the 95th to 99th percentile in 
children younger than 1 year of age vary from 0.806 to 
1.105 m3/kg-day in girls and 0.842 to 1.138 m3/kg-day 
in boys. These percentiles are 2.8- to 4-folds higher than 
the inhalation estimate of 0.286  m3/  kg-day (i.e. 20 m3/
day for a 70-kg adult) adopted by the Federal Register 
Notices (1980). The same nearly applies to the span of 
values from the 5th to 99th percentiles (0.328–1.138 m3/
kg-day) for children aged 0.22 to <7 years, and the 10th to 
99th percentiles (0.303–0.712 m3/ kg-day) for those from 
7 to <10 years old.

The magnitude of human variability in inhalation 
values, as reflected by the lowest 1st percentile of 0.105 
m3/ kg-day (data not shown in tables) and the highest 
99th percentile of 1.138 m3/kg-day in males and females 
aged 2.6 months to 96 years (Tables 9 and 10) corresponds 
to a factor of 10.9. The inter-individual variability factor 
of 4.8 was also calculated as the ratio of the highest 95th 
percentile of 0.937 m3/kg-day to the lowest 50th percen-
tile of 0.194 m3/ kg-day. Values for lowest percentiles 
were always observed in elderly females aged 65 to <96 
years and the highest percentile was found in boys aged 
2.6 to <6 months. Such inter-individual variability factors 
for inhalation values (i.e. 4.8–10.9) should be evaluated 
along with the variability in other pharmacokinetic deter-
minants, in order to assess the adequacy of the default 
uncertainty factor or the human kinetic adjustment factor 
(HKAF) currently used in health risk assessment (Renwick 
2000; WHO 2005).

Table 7. � Postprandial oxygen uptake factor resulting from daily 
nutrient intakes for both sexes as a function of age.

Age n

Nutrient intake 
contributions (%)

Oxygen uptake 
factorb (L of O

2
/

kcal)Protein Fat COHa

Breast milk
1 weekc 60 18.7 26.3 55.1 0.207
2 weeksc 60 15.3 27.9 56.8 0.206
3 weeksc 60 13.0 28.4 58.5 0.206
4 weeksc 60 11.6 30.6 57.8 0.206
5 weeksc 60 11.0 30.4 58.6 0.206
1 monthd 37 9.0 33.3 57.7 0.206
1 monthe 10 12.2 34.8 53.0 0.206
6 weeksc 60 10.9 31.1 58.0 0.206
7 weeksc 60 10.4 30.3 59.3 0.205
8 weeksc 60 10.2 29.4 60.4 0.205
2 monthsd 40 8.2 31.7 60.1 0.205
9 to 10 weeksc 60 9.9 30.1 60.0 0.205
10 to 12 weeksc 60 9.7 29.0 61.3 0.205
3 monthsd 37 7.9 30.4 61.8 0.205
4 monthsd 41 7.5 31.6 60.9 0.205
Formula-fedf

1 to 12 weeks 60 15.3 26.4 58.3 0.206
Liquid and solid foodg

<1 month 6 15.7 21.7 62.7 0.205
1 to 2 months 35 15.6 20.6 63.8 0.205
3 to 5 months 65 21.1 15.7 63.3 0.206
6 to 8 month 74 21.1 17.1 61.8 0.206
9 to 11 months 70 19.8 14.5 65.6 0.205
1 to 4 years 1031 18.5 20.9 60.6 0.206
5 to 11 years 1995 16.6 20.7 62.6 0.206
19 to 19 years 2232 17.3 22.8 59.9 0.206
20 to 39 years 2346 18.9 24.0 57.1 0.206
40 to 64 years 2722 18.8 23.2 58.0 0.206
65+ years 1699 18.0 21.7 60.3 0.206
aCOH = Carbohydrate.
bH

P
 = postprandial oxygen uptake factor.

cGross (1983).
dButte et al. (1984).
eButte and Calloway (1981).
fGross (1983).
gValues for Canadian individuals (NC 1977).
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The use of H
F
, H

P
, VQβ, and VQα values as calculated 

in the present study does not invalidate the conclusions 
of our previous studies based on calculations using a 
VQ of 27 and H of 0.21 L of O

2
/kcal as constant values: 

(1) the aggregate errors (under- and overestimations) of 
daily inhalation estimates and percentiles (in m3/day and 

m3/ kg-day) based on published approaches do remain the 
same (Brochu et al. 2006c) and (2) intakes of inhaled air 
pollutants per unit of body weight (in µg/kg-day) again are 
expected to be higher in normal-weight males and females 
compared with their overweight and obese counterparts 
(Brochu et al. 2006a, b).

Table 8.  Oxygen uptake factor resulting from nutrient intakes for both sexes in different countries.

Age (years)

Nutrient intake contributions (%) Oxygen uptake 
factorc (L of O

2
/kcal)

Country

Males Females

n Prota Fat COHb n Prota Fat COHb Males Females

1 62 19.6 21.6 58.9 63 20.7 23.0 56.3 0.206 0.207 Australiad

1.5 72 18.3 21.4 60.3 70 18.8 21.8 59.4 0.206 0.206 Australiad

2 74 17.8 22.1 60.1 72 17.4 21.3 61.2 0.206 0.206 Australiad

1 to 2 23 18.1 17.4 64.5 23 17.8 15.1 54.8 0.205 0.206 Finlande

2 31 14.7 18.7 66.7 31 15.1 18.7 66.2 0.205 0.205 UKf

3 73 16.7 20.6 62.7 72 16.8 21.5 61.7 0.206 0.206 Australiad

3 31 15.1 18.3 66.5 42 14.8 19.0 66.2 0.205 0.205 UKf

3 153 18.2 19.7 62.1 128 18.3 19.7 62.0 0.206 0.206 Finlande

4 to 5 128 16.4 19.0 64.6 139 16.7 19.4 63.8 0.205 0.205 UKf,g

6 139 17.5 19.1 63.4 145 17.7 19.8 62.6 0.205 0.206 Finlande

6 to 9 130 17.0 20.0 63.0 116 17.0 21.3 61.7 0.205 0.206 USAh

7 to 10 25 13.6 19.5 66.8 26 14.2 18.7 67.1 0.205 0.205 UKi

9 281 17.6 21.0 61.3 263 17.7 20.9 61.3 0.206 0.206 Finlandj,k

9.0 434 17.0 19.8 63.3 450 17.0 20.0 63.1 0.205 0.205 Australial

9 133 13.8 37.0 50.0 n.d. n.d. n.d. n.d. 0.207 n.d. Finlandm

9 117 13.5 38.0 49.0 n.d. n.d. n.d. n.d. 0.207 n.d. The 
Netherlandsm

9 109 13.4 28.0 57.0 n.d. n.d. n.d. n.d. 0.206 n.d. Italym

9 114 11.7 16.0 72.0 n.d. n.d. n.d. n.d. 0.204 n.d. The 
Philippinesm

9 116 9.2 22.0 68.0 n.d. n.d. n.d. n.d. 0.204 n.d. Ghanam

9 to 11 196 19.4 21.9 58.7 222 18.9 21.4 59.7 0.206 0.206 USAn

11 to 12 76 16.0 20.3 63.8 67 15.7 21.0 63.3 0.205 0.205 UKi

12 274 18.0 21.7 60.2 285 17.6 20.8 61.6 0.206 0.206 Finlandj,k

10 to 12 132 18.9 22.1 59.0 147 16.8 20.8 62.4 0.206 0.206 USAh

12 to 14 296 19.4 22.6 57.9 295 19.5 22.6 58.0 0.206 0.206 USAn

15 257 18.4 22.2 59.4 264 17.5 20.7 61.8 0.206 0.206 Finlandj,k

13 to 15 134 18.0 23.0 59.0 110 17.8 22.0 60.2 0.206 0.206 USAh

15 to 18 365 20.3 23.4 56.3 374 20.1 23.1 56.8 0.207 0.207 USAn

18 217 18.3 22.7 59.0 264 17.5 21.1 61.3 0.206 0.206 Finlandj,k

16 to 19 96 19.1 24.1 56.8 84 17.1 22.7 60.2 0.206 0.206 USAh

21.0 73 19.1 23.7 57.2 82 17.5 21.5 61.0 0.206 0.206 Finlandj,k

19 to 22 256 22.0 24.6 53.4 300 21.5 24.1 54.4 0.207 0.207 USAn

23 to 35 791 21.7 24.8 53.5 952 21.6 23.9 54.5 0.207 0.207 USAn,o

24 59 19.9 24.6 55.4 84 18.2 21.5 60.3 0.207 0.206 Finlandj,k

24 to<35 117 22.2 15.8 62.1 121 23.3 16.5 60.2 0.206 0.206 Chinap

35 to 40 714 22.6 25.6 51.9 838 22.4 24.8 52.9 0.207 0.207 USAn

35 to 44 129 21.9 15.7 62.4 134 22.3 15.8 61.9 0.206 0.206 Chinap

40 to 50 171 19.6 14.5 65.9 180 19.2 15.7 65.1 0.205 0.205 Japanq

45 to 54 124 22.2 15.2 62.6 127 22.3 14.6 63.1 0.206 0.206 Chinap

51 to 64 579 22.8 25.4 51.7 715 22.6 24.4 53.0 0.207 0.207 USAn

55 to 74 130 20.5 13.8 65.7 128 20.7 13.8 65.5 0.205 0.205 Chinap

≤ 60 449 18.1 16.8 65.2 497 18.1 16.8 65.1 0.205 0.205 Italyr

≤ 60 1583 20.9 22.0 57.1 1935 20.1 20.3 59.6 0.207 0.206 USAn,r

n.d. = not determined. aProt = Protein. bCOH = Carbohydrate. cH
P
 = postprandial oxygen uptake factor. dHitchcock et al. (1984). eRäsänen 

and Ylönen (1992). fPayne and Belton (1992). gMargarey and Boulton (1984). hMorisson et al. (1980). iNelson et al. (1990). jRäsänen et al. 
(1985). kRäsänen et al. (1991). lJenner et al. (1988). mKnuiman et al. (1983). nPao et al. (1985). oOliveria et al. (1992). pWoo et al. (1998). 
qTokudome et al. (1999). rFreudenheim et al. (1993).
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H values
High intakes of carbohydrates and a low level of proteins 
ingested led to lower H

P
 values (0.203–0.204 L of O

2
/kcal) 

in subjects (n = 17 993) living in Ghana, the Philippines, 
and Vietnam, compared with those from other countries 
(0.205–0.208 L of O

2
/kcal; n = 101,686). However, the 

magnitude of H
P
 values is unaffected by an individuals’ 

age, gender, or BMI for subjects living in a given coun-
try (n = 119 679). Rather, it is the variability of the food 
intake components that determines the magnitude of H

P
 

values. However, such variability is found to have little 
effect on the magnitude of physiological daily inhalation 

Table 9.  Distribution percentiles of physiological daily inhalation rates for normal-weight males aged 2.6 months to 96 years.

Age group (years)

Physiological daily inhalation ratesa

Mean ± SD
Percentiles

2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th 99th
(m3/day)
0.22 to <0.5 3.76 ± 1.15 2.02 2.20 2.44 2.92 3.57 4.40 5.31 5.97 6.47 7.26
0.5 to <1 4.66 ± 1.34 2.61 2.82 3.11 3.68 4.46 5.45 6.47 7.13 7.74 8.48
1 to <2 5.68 ± 0.85 4.24 4.39 4.61 5.05 5.61 6.25 6.86 7.20 7.45 7.75
2 to <5 7.35 ± 1.39 5.04 5.25 5.57 6.27 7.23 8.31 9.33 9.87 10.24 10.54
5 to <7 9.04 ± 1.21 6.95 7.21 7.54 8.17 8.94 9.81 10.64 11.18 11.68 12.28
7 to <10 11.17 ± 1.89 8.14 8.42 8.84 9.74 10.96 12.35 13.82 14.69 15.40 16.21
10 to <16.5 15.64 ± 3.87 9.82 10.40 11.16 12.74 15.06 17.92 21.04 22.84 24.54 26.72
16.5 to <25 20.39 ± 4.26 13.30 14.15 15.22 17.37 20.04 22.96 25.93 28.05 30.02 31.89
25 to <35 20.00 ± 3.78 13.84 14.54 15.52 17.30 19.55 22.27 25.15 27.00 28.52 30.54
35 to <45 20.12 ± 5.03 12.39 13.24 14.33 16.50 19.41 22.97 26.71 29.32 31.84 35.40
45 to <65 18.41 ± 4.25 11.86 12.60 13.51 15.30 17.80 20.90 24.05 26.39 28.33 30.75
65 to ≤96 15.25 ± 3.78 9.44 10.06 10.90 12.47 14.73 17.50 20.27 22.12 23.91 26.05
(m3/kg day)b

0.22 to <0.5 0.572 ± 0.191 0.290 0.317 0.356 0.433 0.541 0.677 0.828 0.937 1.040 1.138
0.5 to <1 0.536 ± 0.166 0.288 0.312 0.344 0.414 0.509 0.634 0.759 0.842 0.922 1.015
1 to <2 0.537 ± 0.095 0.379 0.397 0.420 0.467 0.527 0.599 0.666 0.708 0.747 0.787
2 to <5 0.493 ± 0.125 0.297 0.317 0.345 0.400 0.477 0.568 0.663 0.726 0.777 0.845
5 to <7 0.463 ± 0.077 0.332 0.349 0.368 0.407 0.456 0.511 0.564 0.597 0.631 0.668
7 to <10 0.428 ± 0.098 0.275 0.290 0.312 0.357 0.416 0.485 0.560 0.609 0.653 0.712
10 to <16.5 0.383 ± 0.131 0.191 0.211 0.237 0.288 0.362 0.454 0.556 0.628 0.702 0.790
16.5 to <25 0.290 ± 0.065 0.184 0.197 0.213 0.244 0.283 0.330 0.377 0.406 0.435 0.473
25 to <35 0.282 ± 0.059 0.187 0.198 0.212 0.239 0.275 0.317 0.361 0.390 0.417 0.445
35 to <45 0.289 ± 0.077 0.173 0.185 0.203 0.234 0.278 0.333 0.389 0.429 0.470 0.523
45 to <65 0.259 ± 0.065 0.161 0.171 0.184 0.212 0.249 0.296 0.346 0.378 0.408 0.449
65 to ≤96 0.225 ± 0.059 0.134 0.144 0.157 0.182 0.216 0.259 0.303 0.333 0.360 0.400
(m3/m2 day)b

0.22 to <0.5 10.99 ± 3.50 5.74 6.26 7.00 8.46 10.44 12.97 15.76 17.60 19.49 21.51
0.5 to <1 11.24 ± 3.34 6.15 6.69 7.41 8.80 10.74 13.15 15.70 17.42 18.96 21.15
1 to <2 11.68 ± 1.91 8.42 8.83 9.30 10.28 11.51 12.91 14.25 15.06 15.79 16.59
2 to <5 11.54 ± 2.61 7.32 7.78 8.40 9.58 11.26 13.18 15.11 16.27 17.36 18.52
5 to <7 11.53 ± 1.72 8.59 8.96 9.43 10.30 11.39 12.61 13.83 14.58 15.29 16.11
7 to <10 11.55 ± 2.27 7.94 8.33 8.86 9.88 11.28 12.94 14.61 15.74 16.71 17.75
10 to <16.5 11.82 ± 3.50 6.64 7.13 7.83 9.26 11.22 13.77 16.61 18.44 20.17 22.29
16.5 to <25 10.92 ± 2.35 7.02 7.48 8.08 9.23 10.73 12.33 13.96 15.11 16.22 17.45
25 to <35 10.64 ± 2.12 7.21 7.63 8.12 9.12 10.40 11.89 13.52 14.50 15.43 16.50
35 to <45 10.93 ± 2.80 6.63 7.11 7.73 8.90 10.53 12.48 14.64 16.05 17.43 19.31
45 to <65 9.88 ± 2.36 6.28 6.63 7.15 8.16 9.56 11.25 12.99 14.24 15.32 16.92
65 to ≤96 8.42 ± 2.13 5.14 5.50 5.95 6.86 8.12 9.67 11.23 12.25 13.29 14.78
SD = standard deviation.
aDaily inhalation rates = [(SMR × H

F
 × VQβ × Sld) + (Eα × H

P
 × VQα)× (24− Sld)] × 0.06, and SMR = [(BEE × F

sleep
) + ECG]/1440, Eα = [(TDEE− 

BEE)/((24− Sld) × 60)] + (BEE + ECG)/1440. BEE, ECG, TDEE (kcal/day) and Sld (h/day) are defined and given in Tables 1, 2 and 5. VQβ 
and VQα (unitless) are defined and reported in Table 3. SMR = sleeping metabolic rate (kcal/min). F

sleep
 is a correcting factor of BEE 

values. F
sleep

 = 0.960 ± 0.023, minimum = 0.870, maximum = 1.039. H
F
 and H

P
 = oxygen uptake factor during fasting and postprandial phases, 

respectively (L of O
2
/kcal). H

F
 = 0.2057 ± 0.0018 L/kcal, minimum = 0.198 L/kcal, maximum = 0.214 L/kcal. H

P
 = 0.2059 ± 0.0019 L/kcal, 

minimum of 0.199 L/kcal, maximum of 0.221 L/kcal.
bDaily inhalation rates were divided by body weights and body surface areas reported in Tables 1 and 2 in order to obtain values 
expressed in m3/kg min and m3/m2 min, respectively.
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rates. The use of the lowest H
P
 value of 0.203 L of O

2
/kcal 

for Vietnamese subjects (n = 17,763) and the highest H
P
 

value of 0.208 L of O
2
/kcal for American and French sub-

jects (n = 77,278), instead of the H
P
 value of 0.2059 L of 

O
2
/kcal that was used in this study, would have changed 

the physiological daily inhalation rates by only −1.2% to 

+0.9%. This is due to the fact that H
P
 and H

F
 values (i.e. 

0.2059 and 0.2057 L of O
2
/kcal, respectively) both rest in 

the middle of the span between the lower Vietnamese 
(i.e. 0.203 L of O

2
/kcal) and higher American (i.e. 0.208 L 

of O
2
/kcal) values. Several thousand sets of VO

2
 and VCO

2
 

values (data not shown in tables; n = 6696) measured in 

Table 10.  Distribution percentiles of physiological daily inhalation rates for normal-weight females aged 2.6 months to 96 years.

Age group (years)

Physiological daily inhalation ratesa

Mean ± SD
Percentiles

2.5th 5th 10th 25th 50th 75th 90th 95th 97.5th 99th
(m3/day)
0.22 to <0.5 3.63 ± 1.07 2.03 2.19 2.41 2.86 3.47 4.25 5.07 5.64 6.15 6.72
0.5 to <1 4.30 ± 1.26 2.35 2.57 2.84 3.37 4.13 5.02 6.00 6.62 7.24 8.07
1 to <2 5.43 ± 0.90 3.79 3.97 4.22 4.76 5.41 6.07 6.64 6.96 7.18 7.39
2 to <5 6.90 ± 1.25 4.87 5.06 5.34 5.94 6.77 7.72 8.62 9.20 9.62 9.99
5 to <7 8.59 ± 1.12 6.66 6.88 7.19 7.75 8.50 9.32 10.10 10.58 11.03 11.49
7 to <10 10.71 ± 1.62 7.94 8.27 8.71 9.54 10.57 11.75 12.89 13.64 14.28 14.94
10 to <16.5 13.32 ± 3.06 8.49 9.02 9.67 11.02 12.98 15.17 17.43 18.96 20.35 21.92
16.5 to <25 16.46 ± 3.21 11.19 11.76 12.61 14.16 16.13 18.38 20.69 22.20 23.59 25.22
25 to <35 15.82 ± 3.05 10.83 11.38 12.11 13.65 15.52 17.64 19.88 21.34 22.73 24.35
35 to <45 16.21 ± 4.02 9.99 10.69 11.55 13.31 15.61 18.51 21.68 23.55 25.57 27.90
45 to <65 14.46 ± 3.37 9.04 9.67 10.45 12.05 14.08 16.47 18.91 20.49 22.10 24.00
65 to ≤96 11.51 ± 3.04 6.84 7.32 7.97 9.30 11.07 13.25 15.56 17.29 18.62 20.54
(m3/kg day)b

0.22 to <0.5 0.563 ± 0.180 0.299 0.326 0.360 0.431 0.534 0.662 0.807 0.897 0.994 1.105
0.5 to <1 0.510 ± 0.159 0.269 0.295 0.329 0.393 0.486 0.601 0.722 0.806 0.882 0.979
1 to <2 0.516 ± 0.105 0.336 0.356 0.384 0.438 0.510 0.582 0.659 0.704 0.740 0.785
2 to <5 0.492 ± 0.124 0.288 0.311 0.341 0.400 0.480 0.568 0.661 0.716 0.766 0.826
5 to <7 0.441 ± 0.076 0.313 0.328 0.349 0.386 0.434 0.488 0.545 0.579 0.609 0.642
7 to <10 0.395 ± 0.076 0.267 0.284 0.303 0.340 0.388 0.443 0.497 0.531 0.564 0.601
10 to <16.5 0.306 ± 0.089 0.170 0.185 0.204 0.241 0.293 0.358 0.427 0.471 0.514 0.566
16.5 to <25 0.275 ± 0.059 0.180 0.190 0.206 0.234 0.269 0.310 0.352 0.380 0.408 0.444
25 to <35 0.273 ± 0.060 0.176 0.187 0.201 0.230 0.266 0.310 0.354 0.383 0.410 0.443
35 to <45 0.277 ± 0.072 0.166 0.179 0.194 0.225 0.266 0.318 0.373 0.410 0.443 0.480
45 to <65 0.247 ± 0.061 0.150 0.161 0.176 0.203 0.239 0.282 0.328 0.358 0.387 0.420
65 to ≤96 0.202 ± 0.059 0.114 0.124 0.136 0.160 0.194 0.235 0.281 0.311 0.344 0.385
(m3/m2 day)b

0.22 to <0.5 10.81 ± 3.29 5.90 6.38 7.02 8.42 10.29 12.62 15.29 17.03 18.65 20.37
0.5 to <1 10.55 ± 3.18 5.71 6.22 6.85 8.23 10.08 12.40 14.77 16.40 17.99 20.00
1 to <2 11.14 ± 2.06 7.47 7.91 8.49 9.61 11.04 12.55 13.93 14.74 15.40 16.10
2 to <5 11.24 ± 2.53 7.12 7.59 8.19 9.36 10.95 12.84 14.66 15.89 16.97 18.04
5 to <7 10.98 ± 1.67 8.12 8.49 8.93 9.77 10.84 12.03 13.24 14.00 14.60 15.41
7 to <10 10.83 ± 1.84 7.68 8.10 8.56 9.49 10.67 12.00 13.29 14.13 14.81 15.58
10 to <16.5 9.67 ± 2.50 5.84 6.23 6.77 7.83 9.35 11.14 13.03 14.29 15.48 16.88
16.5 to <25 9.84 ± 2.00 6.59 6.97 7.45 8.41 9.61 11.00 12.51 13.43 14.35 15.35
25 to <35 9.73 ± 2.01 6.43 6.84 7.33 8.30 9.52 10.93 12.41 13.32 14.27 15.27
35 to <45 9.90 ± 2.50 6.05 6.48 7.01 8.11 9.56 11.32 13.26 14.53 15.76 17.15
45 to <65 8.88 ± 2.12 5.46 5.87 6.35 7.35 8.62 10.12 11.69 12.75 13.67 15.00
65 to ≤96 7.20 ± 1.99 4.22 4.52 4.92 5.76 6.92 8.33 9.87 10.88 11.93 13.15
SD = standard deviation.
aDaily inhalation rates = [(SMR × H

F
 × VQβ × Sld) + (Eα × H

P
 × VQα) × (24− Sld)] × 0.06, and SMR = [(BEE × F

sleep
) + ECG]/1440, Eα = [(TDEE− 

BEE)/((24− Sld) × 60)] + (BEE + ECG)/1440. BEE, ECG, TDEE (kcal/day) and Sld (h/day) are defined and given in Tables 1 ,2 and 5. VQβ 
and VQα (unitless) are defined and reported in Table 3. SMR = sleeping metabolic rate (kcal/min). F

sleep
 is a correcting factor of BEE 

values. F
sleep

 = 0.960 ± 0.023, minimum = 0.870, maximum = 1.039. H
F
 and H

P
 = oxygen uptake factor during fasting and postprandial phases, 

respectively (L of O
2
/kcal). H

F
 = 0.2057 ± 0.0018 L/kcal, minimum of 0.198 L/kcal, maximum of 0.214 L/kcal. H

P
 = 0.2059 ± 0.0019 L/kcal, 

minimum of 0.199 L/kcal, maximum of 0.221 L/kcal.
bDaily inhalation rates were divided by body weights and body surface areas reported in Tables 1 and 2 in order to obtain values 
expressed in m3/kg min and m3/m2 min, respectively.
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subjects during strenuous exercise when consuming 
higher oxygen rates (0.82–5.48 L/min) than upper VO

2
β 

and VO
2
α limits would have biased H values that were 

included in the present study.

VQ values
For a given age group, VQ values during anaerobiosis 
were found to be higher than values for VQβ, VQα, and 
VQ for VO

2
 demands below the anaerobic threshold 

ranging from 0.54 to 1.81 L/min. Former VQ values were 
calculated by using VE values measured in subjects per-
forming strenuous exercises during high oxygen uptake 
rates varying from 0.86 to 4.47 L/min in children aged 1 to 
<16.5 years and 3.00 to 5.63 L/min in individuals 16.5–96 
years of age, respectively. During such periods of exertion, 
the aerobic metabolism becomes inadequate to supply 
all energy required and is compensated by the anaerobic 
metabolism (Guyton 1991). However, these punctual VE 
values as well as those used for the calculation of VQ val-
ues below the anaerobic threshold have little influence 
on physiological daily inhalation rates, since VO

2
α val-

ues during the aggregate daytime activities for subjects 

aged 2.6 months to 96 years were found to vary only from 
0.06 to 0.81 L/min. The performance of activities under 
anaerobic conditions can be considered to correspond, 
in the reality of each day, to sufficiently rare events of 
short durations; the latter are therefore diluted in the 
large aerobic process of oxygenation, which is continu-
ously effective during the aggregate daytime activities as 
well as on a 24-h basis. Consequently, values for VQ dur-
ing anaerobiosis would have overestimated physiological 
daily inhalation rates, while most of those during sub-
anaerobiosis would have underestimated such rates.

Conclusion

This study presents an exhaustive compilation and criti-
cal analysis of a wide range of published data related to 
H and VQ values. It supports the establishments of solid 
bases for the appropriate selection and use of input 
data in the determination of daily inhalation rates. By 
the same occasion, it contributes to improve our previ-
ous procedure based on DLW measurements (Brochu 
et al. 2006a–c) due to the fact that it is now possible to 
determine and integrate nighttime and daytime respira-
tory parameters into the physiological daily inhalation 
calculation process. Only data measured in healthy sub-
jects during VO

2
 demands within the span of VO

2
β and 

VO
2
α values based on DLW measurements were used in 

the present study in order to determine H
F
 and VQβ val-

ues for nighttime sleep (fasting phase) as well as H
P
 and 

VQα values for aggregate daytime activities (postpran-
dial phase), respectively. This innovative strategy has 
allowed for the exclusion of inadequate published data 
in the calculation of physiological daily inhalation rates 
measured in >19,000 subjects. Values for H

F
, VQβ, H

P
, 

and VQα were combined into the daily inhalation rates 
calculation process with BEE from indirect calorimetry 
measurements (n = 1235) as well as ECG and TDEE val-
ues based on DLW methodology covering an aggregate 
period of >19,000 days. In the worst case scenario, simul-
taneous minimal and maximal mean errors associated 
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Figure 1.  Mean daily inhalation rates (m3/day) in normal-weight 
males and females as a function of age.
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weight males and females as a function of age.
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Figure 2.  Mean daily inhalation rates (m3/kg day) in normal-weight 
males and females as a function of age.
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with H, BEE, ECG, and TDEE values could have a com-
bined effect varying from −3.0% to +2.3% on the accu-
racy of physiological daily inhalation values. This span 
of potential errors is insignificant compared with those 
based on time–activity ventilation, food-energy intakes, 
metabolic equivalents, and Parameter A approaches 
(Brochu et al. 2006c), which vary from −49% to +122% for 
some 24-h breathing estimates. Body weight and height, 
as well as BEE and TDEE values that have been system-
atically measured for each subject during DLW measure-
ments have assured a precise calculation of inhalation 
rates per unit of weight and BSA in the present study. 
Mean and percentile physiological daily inhalation rates 
expressed in m3/m2-day have never been determined 
before for individuals as a function of age. The infor-
mation presented strongly suggests that the mean and 
percentile physiological daily inhalation values reported 
in this study correspond to the most precise inhalation 
values (in m3/day, m3/kg-day, and m3/m2-day) in cur-
rent literature, and are thereby relevant for use in health 
risk assessment.
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